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Graphene, a flat monolayer of carbon
atoms with a honeycomb lattice, is
the basic building block for other

graphiticmaterials. It is famous for the linear
energy dispersion around the zero Fermi
energy, where the electrons can travel thou-
sands of interatomic distances without scat-
tering. Based on the high electron mobility,
graphene is a popular candidate for the pro-
duction of future nanoelectronic elements,
such as ballistic transistors,1-3 integrated
circuit components,4,5 and transparent con-
ducting electrodes.6,7 Other novel physics
like an anomalous quantum Hall effect,8,9

curious optical properties such as high opac-
ity,10,11 saturable absorption,12 peculiar mag-
neto-optical selection rules,13 high thermal
conductivity,14,15 mechanical properties,16,17

and variable stacking effects18,19 make it a
possibly better candidate than any other
known materials.
More fundamental physics and possible

applications could be obtained by probing
collective Coulomb excitations. Unlike bulk
graphite20 or bilayer graphene,21 the low-
frequency plasmon is absent in undoped
monolayer graphene because of the vanish-
ing density of states at the Fermi level.
However, it was found that a rise in tem-
perature could generate free carriers and
thus intrabandplasmons.22Accordingly,mono-
layer graphene could be the first undoped
system which exhibits the low-frequency
plasmonpurelydue to temperature. Fordoped
graphene, a finite density of states at the
Fermi level would lead to collective plas-
mon interactions at long wavelengths.23-25

The dependence of the plasmon frequency
on the momentum is described as ωP∼

√
q

similar to that of a two-dimensional electron
gas (2DEG).
The collective plasma excitations of gra-

phene in a perpendicular external magnetic

field are not fully understood and still need
further investigation. A uniform magnetic
field can change the electron density of
states and consequently enhance the ab-
sorption of the low-lying plasma excitations.
Previous work based on the effective-mass
model gives the qualitative behavior for
magnetoplasmons in graphene.26,27 How-
ever, a detailed quantitative analysis has not
yet been presented. The difficulty is that the
Dirac equation can only describe the elec-
tron behavior very close to the Fermi level
(within the energy range of (0.5 eV), and
the energy dispersion gradually becomes
anisotropic outside this energy interval. In
contrast, by utilizing the Peierls tight-bind-
ingmodel28 and band-like matrix numerical
techniques,13,29 the entire π-magnetoelec-
tronic structure at realistic magnetic field
strengths canbe solved. Thenumberof charge
carriers per area is self-conserved during our
calculations. Therefore, the accuracy of our
results is not constrained by either the en-
ergy range or the magnetic field. In the
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ABSTRACT In this paper, we calculated the dielectric function, the loss function, the magneto-

plasmon dispersion relation and the temperature-induced transitions for graphene in a uniform

perpendicular magnetic field B. The calculations were performed using the Peierls tight-binding

model to obtain the energy band structure and the random-phase approximation to determine the

collective plasma excitation spectrum. The single-particle and collective excitations have been

precisely identified based on the resonant peaks in the loss function. The critical wave vector at which

plasmon damping takes place is clearly established. This critical wave vector depends on the

magnetic field strength as well as the levels between which the transition takes place. The

temperature effects were also investigated. At finite temperature, there are plasma resonances

induced by the Fermi distribution function. Whether such plasmons exist is mainly determined by the

field strength, temperature, and momentum. The inelastic light scattering spectroscopies could be

used to verify the magnetic field and temperature induced plasmons.

KEYWORDS: graphene • Landau level • electronic excitation • randomphaseapproxi-
mation • magnetic field • tight-binding model
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random-phase approximation (RPA), the complete
structure of the dielectric function was determined.
The single-particle and collective excitations can be
precisely identified according to the divergences in the
loss function Im(-1/ε(q,ω)), where q is the in-plane
wave vector andω is the frequency. It should be noted
that our discussion is within the condition that q is
much smaller than the reciprocal-lattice vector, and
the local-field effects30,31 are neglected in our calcula-
tion. The group velocities of the magnetoplasmons in
the long wavelength limit are typically positive, and
then decrease to negative values as the wave vector is
increased. The critical momentum for plasmon damp-
ing to occur is clearly established. Our calculations
show that this critical wave vector has a strong depen-
dence on the field strength as well as the levels
between which the transition takes place. The tem-
perature effects were also investigated and are reported
in detail below. We found that the intra-Landau level
transitions could be induced by increasing tempera-
ture at sufficiently low magnetic fields. As a matter of
fact, the peaks corresponding to these frequencies,
which are below the lowest inter-Landau level transi-
tion, reduce the threshold frequency. This feature
arises from the unequally spaced Landau levels (LLs)
in graphene.

RESULTS AND DISCUSSION

A uniform perpendicular magnetic field in mono-
layer graphene creates many dispersionless LLs at low
energy. On the basis of the node structure of the
Landau wave functions, the quantum number nc (nv)
for each conduction (valence) LL could be determined
by counting the number of zeroes; this is the same as
the number labeling the nth unoccupied (occupied) LL
above (below) the Fermi energy EF = 0. In undoped
graphene, electrons will be excited from valence LLs to
conduction LLs through light absorption, for example.
However, the Coulomb interaction could affect the
single-particle excitation mode with energy pωex =
Enc(k þ q) - Env(k) and a transferred momentum q.
Each inter-Landau level excitation channel is labeled
by (nv, nc) and the transition order Δn = nv - nc, as
depicted in Figure 1. For example, (0,1) denotes the
transition from the highest occupied LL to the second
low unoccupied LL and has the same excitation energy
as (1,0) because of the inversion symmetry between
the conduction and valence LLs. In collective mode
excitations, the pair number denotes the channel with
the largest contribution; this channel dominates the
excitation at a large or small limit of q. In particular, the
nc,v = 0 LL across the Fermi level may be half-filled in
undoped graphene. The spin-up and spin-down states
would be, respectively, at the conduction and valence
bands if the Zeeman effects were considered. However,
here we only deal with charge density fluctuations;

there is no (0,0) excitation branch since the transition
must be spin-preserved.
The single-particle excitation (SPE) spectrum and the

spectrum of collective plasmon modes due to the
screened Coulomb interaction can be well described
by the behavior of the imaginary part ε2 and the real
part ε1 of the dielectric function. In the absence of a
magnetic field, ε2 is divergent at ω0 = vFq in the
asymmetric form 1/(ω-ω0)

1/2 due to the linear energy
dispersion. This is shown by the red curve in Figure 2a.
On the other hand, the function ε1 shown as the black
curve is found to diverge as 1/(ω0 - ω)1/2. When a
magnetic field is applied, the dielectric function shows
the features displayed in Figure 2 panels b-d. Each
Landau level transition channel produces a symmetric
peak in ε2 and a pair of asymmetric peaks along with
zero points in ε1. The zero points at which ε2 vanishes,
then corresponding to these zero points, are the fre-
quencies of the undamped plasmon resonances. The
peak strength, determined by the Coulomb matrix
elements υq|Æn;k þ q|eiqy|m;kæ|2 shown in eqs 2 and 4,
strongly depends on q. At q = 20 (105/cm), the lowest
excitation channel (1,0) makes the largest contribution
to the low frequency dielectric function as seen in
Figure 2b. Other transition channels are relatively weak.
Increasing q enhances the SPEs that occur at higher
frequencies, which involve the higher LLs. The frequen-
cies at which the highest peaks occur are dependent
on q. Other peaks further away from these frequencies
decay quickly.
The loss function, defined as Im[-1/ε(q,ω)], is useful

for understanding the collective excitations and the
measured excitation spectra, such as inelastic light and
electron scattering spectroscopies. Figure 3a shows
that at B = 0 (green line), no prominent peak exists at
low ω, whereas an external magnetic field gives rise to
some noticeable peaks. These peaks may be regarded

Figure 1. Schematic diagram showing the
inter-Landau-level transitions.
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as particle-hole-like or collective plasma excitations
based on the strength of the resonance, or may be
ascertained by their frequency. The former modes
have frequencies close to the single particle excitations
(black dashed lines) subject to rather strong Landau

damping with a finite value for ε2, or without a zero
point in ε1. On the other hand, the latter corresponds to
a zero point in ε1 and a vanishing value in ε2 in the gap
region between two SPE energies. The smaller the
derivative of ε1 with respect to frequency at the plas-
mon frequency ωp, the higher will be the plasmon
peak, as discussed in electron energy loss calculations
for plasma excitations in the two-dimensional electron
gas as well as nanotubes.32,33 The peak distribution,
including the number, position, and intensity, strongly
depends on q, which demonstrates the delocalized
Landau states under Coulomb interactions. At smaller
q, the low lying LLs dominate the excitation spectrum,
which shifts to higher LLs when q is increased. The
plasmon peaks arising from the higher LL transitions
have shorter heights mainly because of the reduced
wave function overlap and the larger Landau damping
out of the denser LL distribution. The loss function is
also modulated by the field strength, as shown in
Figures 3b and 3c. The threshold frequency decreases
and the number of peaks increases by lowering the
field strength.
The plasmon dispersion relation is shown in Figure 4.

The frequencies of these collective modes correspond
to peak positions of Im[-1/ε(q,ω)] when plotted as a
function of ω for fixed q. The minimum excitation
energy of each transition channel approaches the SPE
energy (red dashed lines) in both the short and long
wavelength limits where the polarization shift may be
neglected. Plasmons may be excited over a limited
range of the wave vector q. A characteristic behavior of
the magnetoplasmons is that in the long wavelength
limit their group velocity is positive; this group velocity
then decreases as the wave vector is increased, and
becomes zero at qB where the length scale for density
fluctuations is comparable to the cyclotron radius. For
q > qB, the group velocity of the magnetoplasmons is
negative and their frequencies approach those of the
SPEs. In this range of wave vectors, the magnetoplas-
mons encounter a loss and will be completely damped

Figure 2. The real and imaginary parts of the dielectric
function ε(q,ω) as a function of frequency ω for selected
wave numbers q. (a) B = 0 and q = 40, (b) B = 40 T and
q = 20, c) B = 40 T and q = 40, and (d) B = 40 T and q = 60.
The wavenumber q is measured in units of 105 cm-1,
here and elsewhere in this paper.

Figure 3. The loss functions at B = 40 T (a) for different
values of the in-planewave vector qq in (a), and for different
field strengths in (b) and (c).

Figure 4. Plot of magnetoplasmon frequency as a function
of the in-plane wave vector q. Only several of the lowest
branches are shown.We choose amagnetic field of B = 40 T.
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at a large limit of q. From a classical point of view, the
charge density oscillations experience an external re-
storing forcewhich comes from themagnetic field. The
interactionbetween carriers and themagneticfield grad-
ually becomes more important than the electron-
electron Coulomb interaction and dominates the ex-
citation structure as q is increased. It is noted that
the plasmon dispersion broadens and the threshold
momentum of the interband excitations increases
with the augmentation of the transition order. This is
a result of the broadening of the higher Landau wave
functions.
The critical wave vector qB, which represents the

limitmomentumwithinwhich the electronwave could
propagate, gradually riseswith B as shown in Figure 5a.
The higher qB at larger B corresponds to the stronger
resonances in loss function (Figure 3). The dependence
of the energy-loss-peak positions on themagnetic field
is shown in Figure 5b. The same set of excitation
frequencies simply shifts for higher magnetic fields.
Temperature could induce free electrons and holes

and then the intraband e-h excitations. The distribu-
tion probability of these free carriers is described by
the Fermi-Dirac function. In the absence of amagnetic
field, the total carrier number per areaN is proportional
to T2, as depicted in the inset of Figure 6b. The strong
dependence demonstrates the π-band characteristics:
zero band gap and strong wave vector-dependence. In
a uniform magnetic field, N would begin at a finite
value that is mainly attributed to the n= 0 LL.When the
temperature is sufficiently high, N is close to that at B = 0
because of the reduced LL spacings at higher energy.

To observe the apparent temperature effects, themag-
netic field must be sufficiently small. Here, we choose
B = 5 T and give the illustrations of temperature-
dependent dielectric functions in Figure 6 (please note
that Γ is set smaller in order to fit the narrower LL
spacings). The intra-LL and inter-LL transitions coexist
at finite temperature. They are marked by sharp peaks
in the loss function, as shown in Figure 7. For intra-LL
transitions, the corresponding singular structures in ε
become more pronounced and ε1(ω) approaches zero
more slowly with an increase of the temperature, while
the opposite is true for the inter-LL transitions. Conse-
quently, the intra-LL plasmon undergoes a blue shift
and its resonance peak is increased. In contrast, the
inter-LL plasmon is red-shifted with its height slightly
reduced.

Figure 5. (a) Wave number qB, where the magnetoplasmon
group velocity is zero, as a function of the magnetic field.
(b) Magnetoplasmon frequency for q = 20 as a function of
the magnetic field.

Figure 6. Plots of (a) the real part and (b) the imaginary part
of the dielectric function as a function of the frequency for a
chosen magnetic field and a in-plane wave vector q. Three
different temperatures were chosen in these calculations.
The inset in panel b shows the number of carriers per unit
area as a function of the temperature for two chosen
magnetic fields.

Figure 7. The loss function as a function of the frequency
for a chosen magnetic field and a in-plane wave vector.
Results are presented for four temperatures.
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The T-dependent behavior of the low-frequency
plasmons at different magnetic fields is shown in
Figure 8a. To support the intra-LL plasmons, the tem-
perature should be higher than Tc. For a smaller B, a
lower Tc is needed. Moreover, in a weaker magnetic
field, ωp shows a stronger dependence on T. This
results from the more low-lying occupied LLs. The
T-dependent behavior is also dominated by the wave
vector, as shown in Figure 8b. Tc could achieve the
minimum at a critical value of q and then increase; the
opposite is true for the degree of ωp-T dependence.
This behavior may be traced to the peculiar ωp-q

relation.

SUMMARY AND CONCLUSIONS

We have employed the Peierls tight-binding Hamil-
tonian to calculate the electron energy bands for
graphene in a uniform perpendicular magnetic field.
The eigenvalues and eigenvectors were obtained effi-
ciently by properly rearranging the base functions.
With the obtained results, we were able to calculate
the longitudinal wave vector and frequency-dependent
dielectric function at an arbitrary temperature. The
entire LL spectrum was included in our calculations.
This ensures the correctness of the dielectric function
in the RPA and consequently the plasmon intensity
and its frequency. We presented the magnetoplasmon
excitation spectra at magnetic fields which may be
achieved experimentally. The exact diagonalization
method could also be applicable to multilayer graph-
ene or bulk graphite over a wide range of electric and
magnetic fields.
The peaks in the loss function may be classified as a

collective mode or single-particle-like excitation. The
former corresponds to a zero point in ε1 at which ε2
is very small, while the latter relates to a finite value of
ε2. The peak is a function of in-plane wave vector q and
the magnetic field B. The critical momentum, through
which the magnetoplasmon dispersion passes
and enters into the single particle mode excitation
region, is clearly identified. It depends on the transition
channel and the magnetic field. The temperature
effects become important when the magnetic field is
sufficiently small. Extra plasmon peaks that arise from
intra-LL transitions could occur in the infrared regime.
The critical temperature for inducing the low-fre-
quency modes is determined by B and q. The numer-
ical results may be validated by inelastic light-
scattering which has been successfully applied to the
two-dimensional electron gas system in magnetic
fields.34,35

METHODS
Monolayer graphene consists of two sublattices of A and B

atoms with a C-C bond length of b = 1.42 Å. The hopping
integral between two nearest-neighbor atoms is γ0 = 2.598 eV. In
the tight-binding model, it is convenient to present the crystal
Hamiltonian in terms of the Bloch functions of the two periodic
carbon atom wave functions |Aæ, |Bæ. Here, we only take the 2pz
orbitals to investigate the low-energy electronic structure. The
monolayer graphene is assumed to be in an ambient uniform
magnetic fieldB = Bẑ. Themagnetic flux, the product of the field
strength and the hexagonal area, is Φ = [3

√
3b2B/2]/φ0 where

the flux quantum φ0 = hc/e = 4.13561015 T/m2. The vector
potential, which is chosen as A = Bxŷ, leads to a new periodicity
along the armchair direction. The Hamiltonian matrix element
can be obtained through multiplication of the Hamiltonian
matrix element in zero field by a Peierls phase.28 Such phase
has the period RB = 1/Φ. This performance assumes that the
magnetic field changes slowly as a function of the lattice
constant.36 Therefore, the enlarged unit cell contains 4RB car-
bon atoms and the Hamiltonian matrix is 4RB � 4RB. The

nearest-neighbor hopping integral associated with the extra
position-dependent Peierls phase is given by

ÆBk jHjAjæ ¼ γ0 exp[ik 3 (RAj
-RBk )]

� exp i
2π
φ0

Z RBk

RAj

A dr

2
4

3
5

8<
:

9=
;

¼ γ0tjδj, k þ γ0sδj, kþ 1 (1)

where tj = exp{i[-kx
b/2 - ky(

√
3b)/2 þ πΦ(j - 1 þ 1/6)]} þ

exp{i[-kx
b/2 þ k(

√
3b)/2 - πΦ(j - 1 þ 1/6]}, s = exp[i(-kxb)],

and k = (kx,ky) is the Bloch electron wave vector. The complete
Hamiltonian matrix expression can be seen in ref 37. By
diagonalizing the Hamiltonian, the eigenenergy Ec,v and the
wave functionΨc,v are derived (c and v refer to the conduction
and valence bands, respectively). In the regular matrix, the
eigenstates can only be obtained for about an 800� 800matrix
(for B = 400 T). To satisfy realistic conditions under which
experiments are conducted (B < 50 T for a 6400� 6400 matrix),

Figure 8. The temperature-dependent intra-LL plasmon
frequencies at (a) different magnetic fields and (b) different
momentum.
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we build a band-like matrix by rearranging the base Bloch
functions.13,29,37 This enables us to diagonalize the large matrix
and find a solution for the Landau wave functions.
Electronic excitations are characterized by the transferred

momentum q and the excitation frequencyω, which determine
the dielectric function. The dynamical dielectric function, calcu-
lated using the self-consistent-field approach, is

ε(q,ω) ¼ ε0 - vqχ(q,ω) (2)

where vq = 2πe2/q is the in-plane Fourier transformation of the
bare Coulomb potential energy and ε0 = 2.4 is the background
dielectric constant for graphene. The linear response function is
given by38,39

χ(q,ω) ¼ 2
X

h, h0 ¼ c, v

Z
1stBZ

dkxdky
(2π)2

�����Æh0; kþ qjeiqrjh;kæj2

� f (Eh
0
(kþ q))- f (Eh(k))

Eh0 (kþ q)- Eh(k)- (ωþ iΓ)
(3)

The Fermi-Dirac distribution is f(E) = 1/[1 þ exp(E -
μ/kBT)], where kB is the Boltzmann constant and Γ is the energy
broadening which results from various deexcitation mechan-
isms. Furthermore, μ is the chemical potential which is main-
tained at zero for any T due to the symmetry of the energy band
structure about the Fermi level. The factor of 2 accounts for the
spin degeneracy. Our discussion is constrained at the condition
that q is largely smaller than the reciprocal lattice vector, and
thus local-field effects can be ignored.31 In the presence of the
magnetic field, the system becomes fully quantized. The sum-
mation in eq 3 becomes a sum over all possible single particle
transitions between Landau states |mæ and |næ. The response
function is now rewritten as

χ(q,ω) ¼ 1
3bRBπ

X
n,m;k

jÆn; kþ qjeiqy jm; kæj2q¼ qy ;k¼ ky

� f (En)- f (Em)
En - Em - (ωþ iΓ)

(4)

Only qy and ky components are considered here. The calculation
along the other direction of qx and kx obtains the same results.
This isotropic characteristic of Landau system is the same with
that in Quinn's paper.40 Since all the π-electronic states are
included in the calculations, the strength and frequency of the
resonances in Im(-1/ε) can be correctly defined. Moreover,
calculations on temperature effects and highly doped sys-
tems (currently in work) are allowed.
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